Phosphorus Sorption by Purple Soils in Relation to Their Properties: Investigation, Characterization, and Explanation

Author:

Tan Bo1ORCID,Barrow N. J.2,Li Longguo1,Zhou Ping3,Zhuang Wenhua1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China

2. School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

3. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu 610041, China

Abstract

Improved soil phosphorus (P) management can be achieved through an understanding of regional soil–P interactions and their relation to soil properties. To this end, soil samples from different use types (paddy soils, dry farmland soils, forest soils, and urban green land soils) were collected from 10 sites across the west to the east of Sichuan Basin, China. These samples were analyzed to determine their P sorption properties and physical and chemical compositions. P sorption was described using a modified Freundlich equation. The results demonstrated a gradient in P sorption within the basin, characterized by higher values in urban areas and a west-to-east decrease trend, along with the null-point values of soil sorption–desorption equilibrium. This variation was linked to the extensive use of P fertilizer, which altered soil particle surface conditions and significantly reduced both the quantity and rate of subsequent fertilizer sorption. Furthermore, P sorption was found to be correlated with the soil clay fraction, amorphous aluminum oxides, and soil organic matter contents. Urban expansion and accelerated erosion of productive agricultural land increase mean soil particle size and may decrease soil P holding and retention capacity. As preliminary deterioration in soil properties was found, conservative soil management is needed to address the potential threats of soil degradation in the central Sichuan Basin.

Funder

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3