Plastic Deformation Characteristics and Calculation Models of Unbound Granular Materials under Repeated Load and Water Infiltration

Author:

Li Ning123ORCID,Zhou Xueyan4,Hu Dongxia5,Wang Jie1ORCID

Affiliation:

1. Key Laboratory of Transport Industry of Road Structure and Material, Research Institute of Highway, Ministry of Transport, Beijing 100088, China

2. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

3. Engineering Research Center of Green Construction & Smart Maintenance of Urban Infrastructure, Universities of Shaanxi Province, Xi’an 710055, China

4. School of Modern Post, Xi’an University of Posts & Telecommunications, Xi’an 710061, China

5. School of Road and Bridge Engineering, Xinjiang Vocational and Technical College of Communication, Urumchi 83140, China

Abstract

Unbound granular materials (UGMs) have advantages in their water storage and drainage capabilities in permeable pavement, which is a benefit for urban sustainable development. The plastic strain of UGM is a crucial mechanical property that affects its design and construction. During its service life, repeated load only, repeated load after infiltration, and simultaneous action with load and infiltration are the three inevitable working conditions that will impact plastic strain, especially dynamic water infiltration. How these working conditions influence plastic strain needs to be focused on and solved. This study conducted laboratory tests to investigate plastic strain considering factors such as loading strength and repetitions, as well as infiltration number and duration. The results showed that the plastic strain and plastic strain rate exhibited similar variations during the repeated load only test and repeated load after infiltration test. The plastic strain changed significantly with different infiltration numbers but had relatively small variations in terms of the plastic strain rate. Longer infiltration duration led to greater plastic strain. With the simultaneous action, the plastic strain presented different variation to the other two conditions. The first and second infiltrations had a more obvious influence on the plastic strain when infiltration was applied. Calculation models were established to predict the effects of loading strength and repetitions as well as infiltration number and duration on plastic strains. For the repeated load only test, an error of 4.6% was observed. In terms of the infiltration number and duration, the errors were found to be 18.5% and 8.5%, respectively. The power function and Sigmoidal Logistic model were used to establish calculation models under the simultaneous action test with a maximum error of 11.5% ranging from 100 to 60,000 repetitions. The proposed calculation models can characterize plastic strain under the three working conditions very well, which can help in the design and construction of fully permeable pavement.

Funder

Opening Funding by the Key Laboratory of Transport Industry of Road Structure and Material

Natural Science Basic Research Program of Shaanxi

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3