Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting

Author:

Hosseini Fatemeh Sadat1,Seo Myoung Bae23,Razavi-Termeh Seyed Vahid2ORCID,Sadeghi-Niaraki Abolghasem2,Jamshidi Mohammad4,Choi Soo-Mi2ORCID

Affiliation:

1. Geoinformation Technology Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran 19697, Iran

2. Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul 05006, Republic of Korea

3. Future & Smart Constrction Division, Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Republic of Korea

4. Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 31785-311, Iran

Abstract

This study aims to predict vital soil physical properties, including clay, sand, and silt, which are essential for agricultural management and environmental protection. Precision distribution of soil texture is crucial for effective land resource management and precision agriculture. To achieve this, we propose an innovative approach that combines Geospatial Artificial Intelligence (GeoAI) with the fusion of satellite imagery to predict soil physical properties. We collected 317 soil samples from Iran’s Golestan province for dependent data. The independent dataset encompasses 14 parameters from Landsat-8 satellite images, seven topographic parameters from the Shuttle Radar Topography Mission (SRTM) DEM, and two meteorological parameters. Using the Random Forest (RF) algorithm, we conducted feature importance analysis. We employed a Convolutional Neural Network (CNN), RF, and our hybrid CNN-RF model to predict soil properties, comparing their performance with various metrics. This hybrid CNN-RF network combines the strengths of CNN networks and the RF algorithm for improved soil texture prediction. The hybrid CNN-RF model demonstrated superior performance across metrics, excelling in predicting sand (MSE: 0.00003%, RMSE: 0.006%), silt (MSE: 0.00004%, RMSE: 0.006%), and clay (MSE: 0.00005%, RMSE: 0.007%). Moreover, the hybrid model exhibited improved precision in predicting clay (R2: 0.995), sand (R2: 0.992), and silt (R2: 0.987), as indicated by the R2 index. The RF algorithm identified MRVBF, LST, and B7 as the most influential parameters for clay, sand, and silt prediction, respectively, underscoring the significance of remote sensing, topography, and climate. Our integrated GeoAI-satellite imagery approach provides valuable tools for monitoring soil degradation, optimizing agricultural irrigation, and assessing soil quality. This methodology has significant potential to advance precision agriculture and land resource management practices.

Funder

Institute of Information and communications Technology Planning and Evaluation

Ministry of Trade, Industry, and Energy

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3