Stochastic Optimization Model of Capacity Configuration for Integrated Energy Production System Considering Source-Load Uncertainty

Author:

Miao Ankang1ORCID,Yuan Yue1,Huang Yi1,Wu Han2,Feng Chao1

Affiliation:

1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China

2. Smart Grid Research Institute, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

China’s carbon neutrality strategy has expedited a transition towards greener and lower-carbon integrated energy systems. Faced with the problem that the central position of thermal power cannot be transformed quickly, utilizing traditional thermal power units in a low-carbon and efficient manner is the premise to guarantee green energy development. This study focuses on the integrated energy production system (IEPS) and a stochastic optimization model for capacity configuration that integrates carbon capture storage and power-to-gas while considering source-load uncertainty. Firstly, carbon capture storage and power-to-gas technologies are introduced, and the architecture and models of the IEPS are established. The carbon and hydrogen storage equipment configuration enhances the system’s flexibility. Also, source-load uncertainty is considered, and a deterministic transformation is applied using the simultaneous backward reduction algorithm combined with K-means clustering. The paper simulates the optimal capacity configuration of the IEPS in a park energy system in Suzhou, China. Furthermore, the research performs a sensitivity analysis on coal, natural gas, and carbon tax prices. Case studies verified that IEPS can realize the recycling of electricity, gas, hydrogen, and carbon, with remarkable characteristics of low-carbon, flexibility, and economical. Stochastic optimized capacity allocation results considering source-load uncertainty are more realistic. Sensitivity intervals for energy prices can reference pricing mechanisms in energy markets. This study can provide ideas for the transition of China’s energy structure and offer directions to the low-carbon sustainable development of the energy system.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3