Mechanical Behavior of a Novel Precast Concrete Beam–Column Joint Using the Mortise–Tenon Connection

Author:

Zhu Zhigang1,Wu Fengqi1,Hao Jing1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China

Abstract

The construction industry has been a significant contributor to global carbon emissions. Fortunately, it is well known that precast concrete structures possess the benefit of reducing carbon emission, of which the beam–column joint plays a crucial role in resisting severe loads. Nowadays, the cast-in-place joint is mostly adopted for beam–column joint The authors declare no conflict of interests of precast concrete structures, and the building industrialization degree is insufficient. In light of this, a novel precast concrete beam–column joint using the mortise–tenon (MT) connection is proposed inspired by traditional timber structures, and the contrastive analysis of mechanical behaviors of this joint and the same-sized cast-in-place joint is conducted by the finite element method. The results indicate that the proposed MT joint has a better mechanical behavior by comparing with the corresponding cast-in-place joint as the beam–column joint. Meanwhile, the MT connection mode has the characteristics of standardized construction, in line with the concept of sustainable development, which can greatly save the construction period. This research demonstrates the feasibility of MT joints in traditional timber structures as beam–column joints in precast concrete structures, and the application of MT joints may be promoted if the size and shape of that are further optimized. Furthermore, this in turn helps research and innovation of precast building construction technology and promotes the sustainable development of the construction industry in the direction of energy conservation and environmental protection.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic analysis of Structural optimization design of post-disaster emergency rescue robot;Transactions on Computer Science and Intelligent Systems Research;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3