Thermal Load Analysis of Piston Damaged by Wall-Wetting Combustion in a Heavy-Duty Diesel Engine

Author:

Li Haiying1,Li Yaozong1,An Yanzhao2,Zhang Yi3,Shi Zhicheng4,Zhu Weiqing1,Qiang Yongping1,Wang Ziyu1

Affiliation:

1. China North Engine Research Institute, Tianjin 300400, China

2. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

3. School of Energy and Power Engineering, North University of China, Taiyuan 038507, China

4. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Piston damage is a frequent problem of engine durability and plays an important role in an engine’s performance design. Recently, a large amount of piston erosion has occurred in a series of heavy-duty diesel engines. To investigate the reason for the piston erosion, a study of the computational fluid dynamics (CFD) of the combustion process in the cylinder and finite element analysis (FEA) of piston was carried out under different initial temperatures. The results show that when the initial temperature decreases from 380 K to 307 K, the mass of wall-wetting increases by 73%, and the maximum combustion pressure increases from 8.1 MPa to 11 MPa; when the initial temperature decreases from 350 K to 328 K, the highest temperature at the throat of the valve pocket increases by nearly 100 K, doubling the temperature fluctuation; and in the case of 328 K, areas exceeding 700 K are concentrated on the top surface of the piston, and the temperature gradient in the depth direction of the throat position decays rapidly.

Funder

Foundation of State Key Laboratory of Engines

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3