Fewer Copepods, Fewer Anchovies, and More Jellyfish: How Does Hypoxia Impact the Chesapeake Bay Zooplankton Community?

Author:

L. Slater WenchengORCID,Pierson James J.ORCID,Decker Mary Beth,Houde Edward D.,Lozano Carlos,Seuberling James

Abstract

To understand dissolved oxygen deficiency in Chesapeake Bay and its direct impact on zooplankton and planktivorous fish communities, six research cruises were conducted at two sites in the Chesapeake Bay from spring to autumn in 2010 and 2011. Temperature, salinity, and dissolved oxygen were measured from hourly conductivity, temperature, and depth (CTD) casts, and crustacean zooplankton, planktivorous fish and gelatinous zooplankton were collected with nets and trawls. CTD data were grouped into three temperature groups and two dissolved oxygen-level subgroups using principal component analysis (PCA). Species concentrations and copepod nonpredatory mortalities were compared between oxygenated conditions within each temperature group. Under hypoxic conditions, there usually were significantly fewer copepods Acartia tonsa and bay anchovies Anchoa mitchilli, but more bay nettles Chyrsaora chesapeakei and lobate ctenophores Mnemiopsis leidyi. Neutral red staining of copepod samples confirmed that copepod nonpredatory mortalities were higher under hypoxic conditions than under normoxia, indicating that the sudden decline in copepod concentration in summer was directly associated with hypoxia. Because comparisons were made within each temperature group, the effects of temperature were isolated, and hypoxia was clearly shown to have contributed to copepod decreases, planktivorous fish decreases, and gelatinous zooplankton increases. This research quantified the direct effects of hypoxia and explained the interactions between seasonality and hypoxia on the zooplankton population.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3