Potential Pathway for Reliable Long-Term CO2 Storage as Clathrate Hydrates in Marine Environments

Author:

Castellani Beatrice1ORCID

Affiliation:

1. CIRIAF, Department of Engineering, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy

Abstract

A countermeasure to global warming is removing high CO2 amounts from the atmosphere and locating the emitted CO2 into long-term stable carbon storage sites. The sequestration technologies must be reliable, long-lasting, and environmentally friendly. An alternative and innovative approach that may meet the sequestration requirements is CO2 storage as clathrate hydrates in marine environments. Extensive research has been devoted to CO2-CH4 replacement in natural gas hydrates. Another option is the direct formation of CO2 hydrates into deep ocean water or into marine underfloor sediments. This article deals with the positioning of direct hydrate-based CO2 storage among the other traditional geological options and the discussion of new, by-far, state-of-the-art knowledge required for the development of a hydrate-based CO2 storage pathway that is reliable, stable, durable, efficient, and environmentally benign.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference60 articles.

1. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

2. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Equivalence of greenhouse-gas emissions for peak temperature limits;Smith;Nat. Clim. Chang.,2012

4. Irreversible climate change due to carbon dioxide emissions;Solomon;Proc. Natl. Acad. Sci. USA,2009

5. Edenhofer, O., Pichs-Madruga, R., Sokona, Y.E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., and Eickemeier, B. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3