Support for the Time-Varying Drift Rate Model of Perceptual Discrimination in Dynamic and Static Noise Using Bayesian Model-Fitting Methodology

Author:

Deakin Jordan12ORCID,Schofield Andrew3,Heinke Dietmar1ORCID

Affiliation:

1. School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

2. Faculty of Psychology and Human Movement Science, General Psychology, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany

3. School of Psychology, Aston University, Birmingham B4 7ET, UK

Abstract

The drift-diffusion model (DDM) is a common approach to understanding human decision making. It considers decision making as accumulation of evidence about visual stimuli until sufficient evidence is reached to make a decision (decision boundary). Recently, Smith and colleagues proposed an extension of DDM, the time-varying DDM (TV-DDM). Here, the standard simplification that evidence accumulation operates on a fully formed representation of perceptual information is replaced with a perceptual integration stage modulating evidence accumulation. They suggested that this model particularly captures decision making regarding stimuli with dynamic noise. We tested this new model in two studies by using Bayesian parameter estimation and model comparison with marginal likelihoods. The first study replicated Smith and colleagues’ findings by utilizing the classical random-dot kinomatogram (RDK) task, which requires judging the motion direction of randomly moving dots (motion discrimination task). In the second study, we used a novel type of stimulus designed to be like RDKs but with randomized hue of stationary dots (color discrimination task). This study also found TV-DDM to be superior, suggesting that perceptual integration is also relevant for static noise possibly where integration over space is required. We also found support for within-trial changes in decision boundaries (“collapsing boundaries”). Interestingly, and in contrast to most studies, the boundaries increased with increasing task difficulty (amount of noise). Future studies will need to test this finding in a formal model.

Funder

UK-ESRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3