Efficient Weights Quantization of Convolutional Neural Networks Using Kernel Density Estimation based Non-uniform Quantizer

Author:

Seo Sanghyun,Kim Juntae

Abstract

Convolutional neural networks (CNN) have achieved excellent results in the field of image recognition that classifies objects in images. A typical CNN consists of a deep architecture that uses a large number of weights and layers to achieve high performance. CNN requires relatively large memory space and computational costs, which not only increase the time to train the model but also limit the real-time application of the trained model. For this reason, various neural network compression methodologies have been studied to efficiently use CNN in small embedded hardware such as mobile and edge devices. In this paper, we propose a kernel density estimation based non-uniform quantization methodology that can perform compression efficiently. The proposed method performs efficient weights quantization using a significantly smaller number of sampled weights than the number of original weights. Four-bit quantization experiments on the classification of the ImageNet dataset with various CNN architectures show that the proposed methodology can perform weights quantization efficiently in terms of computational costs without significant reduction in model performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Very Deep Convolutional Networks for Large-scale Image Recognition;Simonyan;arXiv,2014

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3