Numerical and Experimental Analysis of Matched Filter Interrogation of FBG Sensors with Large Side Lobes

Author:

Skorupski Krzysztof,Cięszczyk SławomirORCID,Panas Patryk,Kisała PiotrORCID

Abstract

This article presents the effect of fiber Bragg gratings side lobes on interrogation systems consisting of sensor and matched filters. The conducted research shows that high-value side lobe structures applied as sensors and/or filters are characterized by some interesting properties. The paper presents both numerical analysis and experimental verification of the fiber Bragg gratings (FBG) interrogation systems with matched filters for gratings containing high side lobes. Numerical modeling of Bragg structures was performed for two different cases: uniform and inverse apodization. Modification of apodization can change the side lobe reflectance level even above levels found in uniform structures. This is a case not described in the literature, especially in terms of possible applications. Transfer characteristics, i.e., the relationship between power intensity as a function of wavelength shift, were determined. A collection of gratings with spectra corresponding to those analyzed in numerical experiments were fabricated. Next, the transfer characteristics of the interrogation systems containing real FBG were determined. The properties of the proposed systems are described. It has been shown that a significant level of sidebands, which is often the subject of many drawbacks in filtering or telecommunications systems, can be an advantage. It has been demonstrated that a high level of side lobes can be used to increase the measurement range of the FBG sensor interrogation systems. It has been determined numerically and confirmed experimentally that from the point of view of the design of sensor interrogation systems, it is beneficial to combine specific pairs of gratings: one with a spectrum characterized by a low side lobe level and a second one in which the spectrum has very high side lobes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3