Enhancing Soil Moisture Forecasting Accuracy with REDF-LSTM: Integrating Residual En-Decoding and Feature Attention Mechanisms

Author:

Li Xiaoning1,Zhang Ziyin1ORCID,Li Qingliang1ORCID,Zhu Jinlong1

Affiliation:

1. College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China

Abstract

This study introduces an innovative deep learning model, Residual-EnDecode-Feedforward Attention Mechanism-Long Short-Term Memory (REDF-LSTM), designed to overcome the high uncertainty challenges faced by traditional soil moisture prediction methods. The REDF-LSTM model, by integrating a residual learning encoder–decoder LSTM layer, enhanced LSTM layers, and feedforward attention, not only captures the deep features of time series data but also optimizes the model’s ability to identify key influencing factors, including land surface features, atmospheric conditions, and other static environmental variables. Unlike existing methods, the innovation of this model lies in its first-time combination of the residual learning encoder–decoder and feedforward attention mechanisms in the soil moisture prediction field. It delves into the complex patterns of time series through the encoder–decoder structure and accurately locates key influencing factors through the feedforward attention mechanism, significantly improving predictive performance. The choice to combine the feedforward attention mechanism and encoder–decoder with the LSTM model is to fully leverage their advantages in processing complex data sequences and enhancing the model’s focus on important features, aiming for more accurate soil moisture prediction. After comparison with current advanced models such as EDLSTM, FAMLSTM, and GANBiLSTM, our REDF-LSTM demonstrated the best performance. Compared to traditional LSTM models, it achieved an average improvement of 13.07% in R2, 20.98% in RMSE, 24.86% in BIAS, and 11.1% in KGE key performance indicators, fully proving its superior predictive capability and potential application value in precision agriculture and ecosystem management.

Funder

National Natural Science Foundation of China

Jilin Provincial Science and Technology Development Plan Project

Jilin Provincial Department of Education Science and Technology Research Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3