Optimized Control of Virtual Coupling at Junctions: A Cooperative Game-Based Approach

Author:

Wang QiORCID,Chai Ming,Liu HongjieORCID,Tang Tao

Abstract

Recently, virtual coupling has aroused increasing interest in regard to achieving flexible and on-demand train operations. However, one of the main challenges in increasing the throughput of a train network is to couple trains quickly at junctions. Pre-programmed train operation strategies cause trains to decelerate or stop at junctions. Such strategies can reduce the coupling efficiency or even cause trains to fail to reach coupled status. To fill this critical gap, this paper proposes a cooperative game model to represent train coupling at junctions and adopts the Shapley theorem to solve the formulated game. Due to the discrete and high-dimensional characteristics of the model, the optimal solution method is non-convex and is difficult to solve in a reasonable amount of time. To find optimal operation strategies for large-scale models in a reasonable amount of time, we propose an improved particle swarm optimization algorithm by introducing self-adaptive parameters and a mutation method. This paper compares the strategy for train coupling at junctions generated by the proposed method with two naive strategies and unimproved particle swarm optimization. The results show that the operation time was reduced by using the proposed cooperative game-based optimization approach.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference40 articles.

1. ERTMS level 4 train convoys or virtual coupling;Mitchell;IRSE News,2016

2. A multi-state train-following model for the analysis of virtual coupling railway operations

3. Application Roadmap for the Introduction of Virtual Coupling,2020

4. Virtual Coupling Communication Solutions Analysis,2020

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3