Insight into the Effects of Hydrodynamic Cavitation at Different Ionic Strengths on Physicochemical and Gel Properties of Myofibrillar Protein from Tilapia (Oreochromis niloticus)

Author:

Xie Kun1,Yang Feng12,Ren Xian’e12,Huang Yongchun12,Wei Fengyan1

Affiliation:

1. Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 565000, China

2. Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 565000, China

Abstract

Effects of different ionic strengths (0.2, 0.4, and 0.6 mol/L) and different hydrodynamic cavitation (HC) treatment times (0, 1, 2, 3, and 4 min) on the conformation and gel properties of tilapia myofibrillar proteins (TMP) were investigated. The results showed that the solubility of TMP was significantly enhanced (p < 0.05) with the increase in NaCl concentration, and the gel characteristics were significantly improved. After HC treatment of TMP, the average particle size was significantly reduced (p < 0.05) and solubility was significantly enhanced (p < 0.05) with the increase in treatment time, the internal hydrophobic groups and reactive sulfhydryl groups were exposed. The intrinsic fluorescence spectra showed the unfolding of the spatial tertiary structure of proteins, and the circular dichroism spectroscopy showed the significant reduction in the content of α-helix in the secondary structure of the proteins (p < 0.05). In addition, the WHC and gel strength of the TMP heat-induced gels were enhanced, which improved the microstructure of the gels, and scanning electron microscopy showed that the gel network of the TMP gels became denser and more homogeneous. Dynamic rheology results showed that HC treatment resulted in a significant increase in the final G’ and G” values of TMP. In conclusion, HC treatment was able to improve the physicochemical structure and gel properties of TMP at different ionic strengths. This study presents a novel processing technique for the quality maintenance aspect of salt-reduced surimi gel products.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3