Affiliation:
1. Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy
2. Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy
Abstract
The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.