Using the Spatiotemporal Hot Spot Analysis and Multi-Annual Landslide Inventories to Analyze the Evolution and Characteristic of Rainfall-Induced Landslide at the Subwatershed Scale in Taiwan

Author:

Wu Chunhung1

Affiliation:

1. Department of Water Resources Engineering and Conservation, Feng Chia University, Taichung 40724, Taiwan

Abstract

This study used rainfall and annual landslide data for the 2003–2017 period in Taiwan to determine the long-term evolution of landslides and conducted a spatiotemporal analysis of landslides at the subwatershed scale. The historically severe landslide induced by Typhoon Morakot in 2009 was mainly distributed in the central mountainous region and southern Taiwan. The Mann–Kendall trend test revealed that in 2003–2017, 13.2% of subwatersheds in Taiwan exhibited an upward trend of landslide evolution. Local outlier analysis results revealed that the landslide high–high cluster was concentrated in the central mountainous region and southern Taiwan. Moreover, the spatiotemporal analysis indicated 24.2% of subwatersheds in Taiwan in 2003–2017 as spatiotemporal landslide hot spots. The main patterns of spatiotemporal landslide hot spots in 2003–2017 were consecutive, intensifying, persistent, oscillating, and sporadic hot spots. The recovery rate in the first two years after the extreme rainfall-induced landslide event in Taiwan was 22.2%, and that in the third to eighth years was 31.6%. The recovery rate after extreme rainfall-induced landslides in Taiwan was higher than that after major earthquake-induced landslides in the world, and the new landslides were easily induced in the area of rivers and large landslide cases after Typhoon Morakot in 2009.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3