DNA Adsorption Studies of Poly(4,4′-Cychlohexylidene Bisphenol Oxalate)/Silica Nanocomposites

Author:

Al balawi Aisha Nawaf,Yusof Nor Azah,Kamaruzaman Sazlinda,Mohammad Faruq,Wasoh Helmi,Al-Lohedan Hamad A.

Abstract

The present study deals with the synthesis, characterization, and DNA extraction of poly(4,4′-cyclohexylidene bisphenol oxalate)/silica (Si) nanocomposites (NCs). The effects of varying the monomer/Si (3.7%, 7%, and 13%) ratio towards the size and morphology of the resulting NC and its DNA extraction capabilities have also been studied. For the NC synthesis, two different methods were followed, including the direct mixing of poly(4,4′-cyclohexylidene bisphenol oxalate) with fumed Si, and in situ polymerization of the 4,4′-cyclohexylidene bisphenol monomer in the presence of fumed silica (11 nm). The formed NCs were thoroughly investigated by using different techniques such as scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis where the results supported that there was the successful formation of poly(4,4′-cyclohexylidene bisphenol oxalate)/Si NC. Within the three different NC samples, the one with 13% Si was found to maintain a very high surface area of 12.237 m2/g, as compared to the other two samples consisting of 7% Si (3.362 m2/g) and 3.7% Si (1.788 m2/g). Further, the solid phase DNA extraction studies indicated that the efficiency is strongly influenced by the amount of polymer (0.2 g > 0.1 g > 0.02 g) and the type of binding buffer. Among the three binding buffers tested, the guanidine hydrochloride/EtOH buffer produced the most satisfactory results in terms of yield (1,348,000 ng) and extraction efficiency (3370 ng/mL) as compared to the other two buffers of NaCl (2 M) and phosphate buffered silane. Based on our results, it can be indicated that the developed poly(4,4′-cyclohexylidene bisphenol oxalate)/Si NC can serve as one of the suitable candidates for the extraction of DNA in high amounts as compared to other traditional solid phase approaches.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3