The Influence of Water/Cement Ratio and Air Entrainment on the Electric Resistivity of Ionically Conductive Mortar

Author:

Zhao Ruohong,Weng Yubin,Tuan Christopher,Xu An

Abstract

Ionically-conductive mortar can be used for indoor radiant heating partition walls. In these applications, mortar blocks are soaked in electrolyte solutions of CuSO4. The surfaces of the block are coated with sealant and epoxy resin afterwards to prevent evaporation. The mortar block becomes a heating element due to ionic conduction if a voltage is applied to the electrodes in the block. Its electrical conductivity depends on the dispersion of the electrolyte, and hence on the porosity of the mortar. The test specimens in this study were divided into four groups according to the different air entrainment agents, including aluminum powder and hydrogen peroxide as well as two air-entraining agents, SJ-2 and K12. Each group was manufactured with water/cement ratios in the range of 0.5 to 0.9. The test results showed that the conductivity of the mortar was strongly influenced by the air-entrainment and the water cement ratios. The volumetric electric resistivity and the associated microstructures of the mortar were investigated. The test results showed that the specimens made with aluminum powder and a water–cement ratio of 0.65–0.75 had high porosity. The porosity of those specimens was further increased by adding two different air-entraining agents. The specimens with aluminum powder and SJ-2, along with a water–cement ratio of 0.7 appeared to be the optimum mixture. Its resistivity was 19.37 Ω·m at 28 days under 25.31% porosity. The experimental results indicate that an ionically-conductive mortar can be produced by combining different air-entrainment agents with variable water-cement ratios to meet a specified electrical heating requirement.

Funder

National Natural Science Foundation of China

Guangzhou Science, Technology and Innovation Commission

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3