Attention-Based CNN-RNN Arabic Text Recognition from Natural Scene Images

Author:

Butt Hanan,Raza Muhammad RaheelORCID,Ramzan Muhammad JavedORCID,Ali Muhammad JunaidORCID,Haris Muhammad

Abstract

According to statistics, there are 422 million speakers of the Arabic language. Islam is the second-largest religion in the world, and its followers constitute approximately 25% of the world’s population. Since the Holy Quran is in Arabic, nearly all Muslims understand the Arabic language per some analytical information. Many countries have Arabic as their native and official language as well. In recent years, the number of internet users speaking the Arabic language has been increased, but there is very little work on it due to some complications. It is challenging to build a robust recognition system (RS) for cursive nature languages such as Arabic. These challenges become more complex if there are variations in text size, fonts, colors, orientation, lighting conditions, noise within a dataset, etc. To deal with them, deep learning models show noticeable results on data modeling and can handle large datasets. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) can select good features and follow the sequential data learning technique. These two neural networks offer impressive results in many research areas such as text recognition, voice recognition, several tasks of Natural Language Processing (NLP), and others. This paper presents a CNN-RNN model with an attention mechanism for Arabic image text recognition. The model takes an input image and generates feature sequences through a CNN. These sequences are transferred to a bidirectional RNN to obtain feature sequences in order. The bidirectional RNN can miss some preprocessing of text segmentation. Therefore, a bidirectional RNN with an attention mechanism is used to generate output, enabling the model to select relevant information from the feature sequences. An attention mechanism implements end-to-end training through a standard backpropagation algorithm.

Publisher

MDPI AG

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3