Machine Learning-Enhanced Pairs Trading

Author:

Hadad Eli1ORCID,Hodarkar Sohail2,Lemeneh Beakal3,Shasha Dennis2ORCID

Affiliation:

1. Centro de Ciências Sociais Aplicadas, Universidade Presbiteriana Mackenzie, Rua da Consolação 930, Sao Paulo 01302-907, SP, Brazil

2. Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

3. University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, NY 14627, USA

Abstract

Forecasting returns in financial markets is notoriously challenging due to the resemblance of price changes to white noise. In this paper, we propose novel methods to address this challenge. Employing high-frequency Brazilian stock market data at one-minute granularity over a full year, we apply various statistical and machine learning algorithms, including Bidirectional Long Short-Term Memory (BiLSTM) with attention, Transformers, N-BEATS, N-HiTS, Convolutional Neural Networks (CNNs), and Temporal Convolutional Networks (TCNs) to predict changes in the price ratio of closely related stock pairs. Our findings indicate that a combination of reversion and machine learning-based forecasting methods yields the highest profit-per-trade. Additionally, by allowing the model to abstain from trading when the predicted magnitude of change is small, profits per trade can be further increased. Our proposed forecasting approach, utilizing a blend of methods, demonstrates superior accuracy compared to individual methods for high-frequency data.

Funder

Capes/Print—Brazil

NYU Wireless

Publisher

MDPI AG

Reference59 articles.

1. Bookstaber, R.M. (2007). A Demon of Our Own Design: Markets, Hedge Funds, and the Perils of Financial Innovation, John Wiley & Sons.

2. Pairs trading: Performance of a relative-value arbitrage rule;Gatev;Rev. Financ. Stud.,2006

3. Lhabitant, F.S., and Gregoriou, G.N. (2015). High-frequency trading: Past, present, and future. Handbook of High Frequency Trading, Academic Press.

4. High-frequency trading: Definition, implications, and controversies;Zaharudin;J. Econ. Surv.,2022

5. Is high-frequency trading tiering the financial markets?;Virgilio;Res. Int. Bus. Financ.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3