Classification of Fashion Models’ Walking Styles Using Publicly Available Data, Pose Detection Technology, and Multivariate Analysis: From Past to Current Trendy Walking Styles

Author:

Kobayashi Yoshiyuki1ORCID,Saito Sakiko2,Murahori Tatsuya3

Affiliation:

1. Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), c/o Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa 277-0882, Japan

2. Liberal Arts and Sciences, Nippon Institute of Technology, 4-1 Gakuendai, Saitama 345-8501, Japan

3. TOKYO GAISHO Inc., #101 Heimat Daikanyama, 2-21-10 Ebisunishi, Tokyo 150-0021, Japan

Abstract

Understanding past and current trends is crucial in the fashion industry to forecast future market demands. This study quantifies and reports the characteristics of the trendy walking styles of fashion models during real-world runway performances using three cutting-edge technologies: (a) publicly available video resources, (b) human pose detection technology, and (c) multivariate human-movement analysis techniques. The skeletal coordinates of the whole body during one gait cycle, extracted from publicly available video resources of 69 fashion models, underwent principal component analysis to reduce the dimensionality of the data. Then, hierarchical cluster analysis was used to classify the data. The results revealed that (1) the gaits of the fashion models analyzed in this study could be classified into five clusters, (2) there were significant differences in the median years in which the shows were held between the clusters, and (3) reconstructed stick-figure animations representing the walking styles of each cluster indicate that an exaggerated leg-crossing gait has become less common over recent years. Accordingly, we concluded that the level of leg crossing while walking is one of the major changes in trendy walking styles, from the past to the present, directed by the world’s leading brands.

Funder

National Institute of Advanced Industrial Science and Technology internal research funds

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3