An Efficient Method to Assess Resilience and Robustness Properties of a Class of Cyber-Physical Production Systems

Author:

Hsieh Fu-ShiungORCID

Abstract

Widely available real-time data from the sensors of IoT infrastructure enables and increases the adoption and use of cyber-physical production systems (CPPS) to provide enterprise-wide status information to promptly respond to business opportunities through real-time monitoring, supervision and control of resources and activities in production systems. In CPPS, the failures of resources are uncertainties that are inevitable and unexpected. The failures of resources usually lead to chaos on the shop floor, delayed production activities and overdue orders. This calls for the development of an effective method to deal with failures in CPPS. An effective method to assess the impacts of failures on performance and create an alternative plan to mitigate the impacts is important. Robustness, which refers to the ability to tolerate perturbations, and resilience, which refers to the capability to recover from perturbations, are two concepts to evaluate the influence of resource failures on CPPS. In this study, we developed a method to evaluate the influence of resource failures on CPPS based on the concepts of robustness and resilience. We modeled CPPS by a class of discrete timed Petri nets. A model of CPPS consists of asymmetrically decomposed models of tasks. The dynamics of tasks can be represented by spatial-temporal networks (STN) with a similar but asymmetrical structure. A joint spatial-temporal networks (JSTN) model constructed based on the fusion of the asymmetrical STNs is used to develop an efficient algorithm to optimize performance. We characterized robustness and resilience as properties of CPPS with respect to the failures of resources. We analyzed the complexity of the proposed method and conducted experiments to illustrate the scalability and efficiency of the proposed method.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. National Institute of Standards and Technology (2022, October 02). Workshop Report on Foundations for Innovation in Cyber-Physical Systems, January 2013, Available online: https://www.nist.gov/el/cyber-physical-systems.

2. A guide to design uncertainty-aware self-adaptive components in Cyber–Physical Systems;Future Gener. Comput. Syst.,2022

3. Advancing Cyber-Physical Systems Resilience: The Effects of Evolving Disruptions;Procedia Manuf.,2019

4. pCSSL: A stochastic extension to MARTE/CCSL for modeling uncertainty in Cyber Physical Systems;Sci. Comput. Program.,2018

5. Distributed finite-time fault estimation and fault-tolerant control for cyber-physical systems with matched uncertainties;Appl. Math. Comput.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3