Capacity of a Radio Vortex Communication System Using a Partial Angular Aperture Receiving Scheme under the Horizontal Non-Kolmogorov Model

Author:

Ma Qian,Zhao HengkaiORCID

Abstract

A partial receiving scheme based on limited angular aperture multi-beam receiving and demultiplexing can solve the difficulty caused by the divergence of the vortex beam in the conventional whole beam receiving scheme and realize the long-distance transmission of the vortex wave. The propagation of the radio vortex beam in atmospheric turbulence is of significant importance in theoretical study and practical applications. In this paper, the influence of atmospheric turbulence on the performance of a radio vortex (RV) communication system based on a partial angular aperture receiving (PAAR) scheme under the horizontal non-Kolmogorov channel model is studied. The spiral spectrum of the PAAR scheme and the channel capacity of the RV communication system using the PAAR scheme are derived. Simulation results demonstrate that the selected transmission frequency range has a great influence on the RV communication system based on the PAAR scheme, and the choice of the orbital angular momentum (OAM) mode number L has an influence on the propagation distance. The capacity of RV communication systems based on the PAAR scheme increases with the increase of the transmission frequency in the selected transmission frequency range of 10 GHz–60 GHz. When the number of orbital angular momentum (OAM) modes L is small, we can improve the signal-to-noise ratio (SNR) to obtain a larger capacity of the RV communication system based on the PAAR scheme over a longer propagation distance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3