Stability Analysis in Milling Based on the Localized Differential Quadrature Method

Author:

Mei Yonggang1,He Bingbing23ORCID,He Shangwen4ORCID,Ren Xin2

Affiliation:

1. School of Construction Machinery, Chang’an University, Xi’an 710064, China

2. College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

3. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

4. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Chatter stability analysis is an effective way to optimize the cutting parameters and achieve chatter-free machining. This paper proposes a milling chatter stability analysis method based on the localized differential quadrature method (LDQM), which has the advantages of simple principle, easy application, and high computational efficiency. The milling process, considering the regeneration effect, is modeled using linear periodic delay differential equations (DDE), then the state transition matrix during the adjacent cutting period is constructed based on the LDQM, and finally, the stability of the milling process is obtained based on the Floquet theory. The accuracy and computation efficiency of the proposed method are verified through two benchmark milling models. The simulation results demonstrate that the proposed method in this paper can accurately and quickly obtain the chatter stability lobe diagram (SLD) of the milling process, which will provide guidance for optimizing the process parameters.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, CHD

Natural Science Basic Research Program of Shaanxi Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3