Mass and Heat Transfer of Pressure Swing Adsorption Oxygen Production Process with Small Adsorbent Particles

Author:

Sun Yuan1,Zhang Chuanzhao2,Zhu Xianqiang1ORCID,Dong Liang1,Sun Xianhang1

Affiliation:

1. School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China

2. College of Biochemical Engineering, Beijing Union University, Beijing 100023, China

Abstract

Rapid-cycle pressure swing adsorption (PSA) with small adsorbents particles is intended to improve mass transfer rate and productivity. However, the mass transfer mechanisms are changed with reduction of particle size during rapid-cycle adsorption process. A heat and mass transfer model of rapid-cycle PSA air separation process employing small LiLSX zeolite particles is developed and experimentally validated to numerically analyze the effects of mass transfer resistances on the characteristics of cyclic adsorption process. Multicomponent Langmuir model and linear driving force model are employed for characterizing the adsorption equilibrium and kinetic. The results of numerical analysis demonstrate that the dominant mass transfer resistance of small adsorbents particles is a combination of film resistance, axial dispersion effect and macropore diffusion resistance. The oxygen purity, recovery and productivity of the product are overestimated by ~2–4% when the effect of axial dispersion on mass transfer is ignored. As particle size decreases, the front of nitrogen-adsorbed concentration and gas temperature become sharp, which effectively improves the performance. However, the adverse effect of axial dispersion on the mass transfer becomes significant at very small particles conditions. It is nearly identical shapes of nitrogen concentration and gas temperature profiles after adsorption and desorption steps. The profiles are pushed forward near the production end with an increase in bed porosities. The optimal oxygen recovery and productivity are achieved with a particle diameter of 0.45 mm and bed porosity of 0.39 during the PSA process.

Funder

Academic Research Projects of Beijing Union University

Changzhou University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3