Lower Limb Muscle Activation in Young Adults Walking in Water and on Land

Author:

Long Christopher1ORCID,Dakin Christopher J.2ORCID,Harper Sara A.3ORCID,Park Joonsun2ORCID,Folau Aaron2,Crandall Mark2,Christensen Nathan2,Louder Talin2

Affiliation:

1. Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84108, USA

2. Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA

3. Kinesiology Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA

Abstract

Previous research has shown that exercise interventions requiring increased activation of the tibialis anterior (TA), the primary ankle dorsiflexor, can improve walking performance in individuals with foot drop. Correspondingly, heightened drag forces experienced during walking performed in water may augment TA activation during the swing phase of gait, potentially leading to improved walking gait on land. Therefore, this study aimed to compare surface electromyographic (sEMG) activation in the TA and medial gastrocnemius (GM) during gait performed in water versus on land. Thirty-eight healthy, recreationally active young adults, comprising 18 females and 20 males, participated in the study. Each participant completed 2 min walking trials under five conditions: land 2.5 mph, land 3.5 mph, water 2.5 mph, water 3.5 mph, and water 3.5 mph with added jet resistance. Stride kinematics were collected using 2-dimensional underwater motion capture. TA and GM, muscle activation magnitudes, were quantified using sEMG root-mean-square (RMS) amplitudes for both the swing and stance phases of walking. Additionally, TA and GM co-activation (Co-A) indices were estimated. Two-way within-subjects repeated measures analyses of variance were used to evaluate the main effects of and interactions between the environment and walking speed. Additionally, paired sample t-tests were conducted as a secondary analysis to investigate differences between walking in water at 3.5 mph with and without added jet resistance. Main effects and interactions were observed across various stride kinematics and sEMG measures. Notably, TA sEMG RMS during the swing phase of walking gait performed at 2.5 mph was 15% greater in water than on land (p < 0.001). This effect increased when walking gait was performed at 3.5 mph (94%; p < 0.001) and when jet resistance was added to the 3.5 mph condition (52%; p < 0.001). Furthermore, TA Co-A was increased during the stance phase of gait in water compared to on land (p < 0.001), while GM Co-A was reduced during the swing phase (p < 0.001). The findings of this study offer compelling evidence supporting the efficacy of aquatic treadmill walking as a potential treatment for individuals suffering from foot drop. However, further research is needed to evaluate whether a causal relationship exists between heightened TA activation observed during aquatic treadmill walking and improvements in voluntary dorsiflexion during gait.

Publisher

MDPI AG

Reference38 articles.

1. Multicenter study of peroneal mononeuropathy: Clinical, neurophysiologic, and quality of life assessment;Aprile;J. Peripher. Nerv. Syst.,2005

2. The interdisciplinary management of foot drop;Becker;Dtsch. Arztebl. Int.,2019

3. Foot drop: Explaining the causes, characteristics and treatment;Graham;Br. J. Neurosci. Nurs.,2010

4. Foot drop: Where, why and what to do?;Stewart;Pract. Neurol.,2008

5. Mechanisms of compensation in the gait of patients with drop foot;Wiszomirska;Clin. Biomech.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3