Experimental Study on Rock Deformation Localization Using Digital Image Correlation and Acoustic Emission

Author:

Xing Tongzhen12,Zhu Haibin2,Song Yimin3

Affiliation:

1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China

2. Centre of Flexible Optical Measurement Technology, Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314006, China

3. School of Civil Engineering, North China University of Technology, Beijing 100144, China

Abstract

In this study, the digital image correlation (DIC) method and acoustic emission (AE) technology were combined to study the evolution of rock deformation localization in detail. The second-order spatial–temporal subset DIC (STS-DIC) algorithm was proposed and used for measuring strongly heterogeneous deformation fields of red sandstone specimens under uniaxial compression. The evolution of the deformation field was analyzed with a focus on the deformation localization stage. The length and width of the deformation localization band (DLB) were measured, and the relationships between the relative sliding rate of the DLB, the relative opening rate of the DLB, and the AE counts were identified. Deformation localization was found to result from the rapid evolution of the strain concentration before the peak stress. The complete development of the DLB is an inducing factor for catastrophic rock failure, and the failure modes of the rock specimens were consistent with the final state of the DLB. A good correlation was identified between the AE counts and the relative displacement rate of the DLB, and the sliding rate was found to have a significant influence on the AE counts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3