Vessel Segmentation in Fundus Images with Multi-Scale Feature Extraction and Disentangled Representation

Author:

Zhong Yuanhong1ORCID,Chen Ting1,Zhong Daidi2,Liu Xiaoming1

Affiliation:

1. The School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. College of Bioengineering, Chongqing University, Chongqing 400044, China

Abstract

Vessel segmentation in fundus images is crucial for diagnosing eye diseases. The rapid development of deep learning has greatly improved segmentation accuracy. However, the scale of the retinal blood-vessel structure varies greatly, and there is a lot of noise unrelated to blood-vessel segmentation in fundus images, which increases the complexity and difficulty of the segmentation algorithm. Comprehensive consideration of factors like scale variation and noise suppression is imperative to enhance segmentation accuracy and stability. Therefore, we propose a retinal vessel segmentation method based on multi-scale feature extraction and decoupled representation. Specifically, we design a multi-scale feature extraction module at the skip connections, utilizing dilated convolutions to capture multi-scale features and further emphasizing crucial information through channel attention modules. Additionally, to separate useful spatial information from redundant information and enhance segmentation performance, we introduce an image reconstruction branch to assist in the segmentation task. The specific approach involves using a disentangled representation method to decouple the image into content and style, utilizing the content part for segmentation tasks. We conducted experiments on the DRIVE, STARE, and CHASE_DB1 datasets, and the results showed that our method outperformed others, achieving the highest accuracy across all three datasets (DRIVE:0.9690, CHASE_DB1:0.9757, and STARE:0.9765).

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3