Quality of Winter Wheat Flour from Different Sowing and Nitrogen Management Strategies: A Case Study in Northeastern Poland

Author:

Lachutta Krzysztof1,Jankowski Krzysztof Józef1ORCID

Affiliation:

1. Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719 Olsztyn, Poland

Abstract

The study analyzed the effect of nitrogen (N) management and different sowing parameters of winter wheat on the flour quality, rheological properties of flour, and bread quality. Flour was obtained from winter wheat grain produced during a field experiment conducted in 2018–2021. The experiment involved three factors: (i) the sowing date (early (3–6 September), delayed by 14 days, and delayed by 28 days), (ii) sowing density (200, 300, and 400 live grains m−2), and (iii) split application of N fertilizer in spring (40 + 100, 70 + 70, and 100 + 40 kg ha−1 in the full tillering stage and the first node stage, respectively). A 28-day delay in sowing increased the total protein content of the flour, water absorption capacity of the flour, dough development time and stability, and degree of softening. When sowing was delayed by 14 or 28 days, the crumb density decreased without affecting the loaf volume. A sowing density of 400 grains m−2 had a positive impact on the flour color, dough stability, and loaf volume. The flour color and dough stability were enhanced when N was applied at 100 + 40 kg ha−1, respectively. In turn, the total protein content of flour peaked when it was applied at 40 + 100 kg N ha−1. The quality of flour improved when winter wheat was sown at a density of 400 live grains m−2 with a delay of 14 or 28 days and supplied with 100 kg N ha−1 in the full tillering stage and 40 kg N ha−1 in the first node stage.

Funder

University of Warmia and Mazury in Olsztyn

Minister of Science

Publisher

MDPI AG

Reference137 articles.

1. Food security: The challenge of feeding 9 billion people;Godfray;Science,2010

2. Solutions for a cultivated planet;Foley;Nature,2011

3. Ray, D.K., Mueller, N.D., West, P.C., and Foley, J.A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8.

4. Models agree on forced response pattern of precipitation and temperature extremes;Fischer;Geophys. Res. Lett.,2014

5. Farahani, M.H.D.A., Vatanpour, V., and Taheri, A. (2019). World’s demand for food and water: The consequences of climate change. Desalination-Challenges and Opportunities, IntechOPen.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3