Using Vocal-Based Emotions as a Human Error Prevention System with Convolutional Neural Networks

Author:

Alsalhi Areej1,Almehmadi Abdulaziz1ORCID

Affiliation:

1. Department of IT, Faculty of Computing and IT, AIST Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract

Human error is a mark assigned to an event that has negative effects or does not produce a desired result, with emotions playing an important role in how humans think and behave. If we detect feelings early, it may decrease human error. The human voice is one of the most powerful tools that can be used for emotion recognition. This study aims to reduce human error by building a system that detects positive or negative emotions of a user like (happy, sad, fear, and anger) through the analysis of the proposed vocal emotion component using Convolutional Neural Networks. By applying the proposed method to an emotional voice database (RAVDESS) using Librosa for voice processing and PyTorch, with the emotion classification of (happy/angry), the results show a better accuracy (98%) in comparison to the literature with regard to making a decision to deny or allow a user to access sensitive operations or send a warning to the system administrator prior to accessing system resources.

Funder

Artificial Intelligence and Sensing Technologies Research Center at the University of Tabuk

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3