WSPolyp-SAM: Weakly Supervised and Self-Guided Fine-Tuning of SAM for Colonoscopy Polyp Segmentation

Author:

Cai Tingting12,Yan Hongping1ORCID,Ding Kun2ORCID,Zhang Yan12,Zhou Yueyue12

Affiliation:

1. School of Information Engineering, China University of Geosciences, Beijing 100083, China

2. State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Ensuring precise segmentation of colorectal polyps holds critical importance in the early diagnosis and treatment of colorectal cancer. Nevertheless, existing deep learning-based segmentation methods are fully supervised, requiring extensive, precise, manual pixel-level annotation data, which leads to high annotation costs. Additionally, it remains challenging to train large-scale segmentation models when confronted with limited colonoscopy data. To address these issues, we introduce the general segmentation foundation model—the Segment Anything Model (SAM)—into the field of medical image segmentation. Fine-tuning the foundation model is an effective approach to tackle sample scarcity. However, current SAM fine-tuning techniques still rely on precise annotations. To overcome this limitation, we propose WSPolyp-SAM, a novel weakly supervised approach for colonoscopy polyp segmentation. WSPolyp-SAM utilizes weak annotations to guide SAM in generating segmentation masks, which are then treated as pseudo-labels to guide the fine-tuning of SAM, thereby reducing the dependence on precise annotation data. To improve the reliability and accuracy of pseudo-labels, we have designed a series of enhancement strategies to improve the quality of pseudo-labels and mitigate the negative impact of low-quality pseudo-labels. Experimental results on five medical image datasets demonstrate that WSPolyp-SAM outperforms current fully supervised mainstream polyp segmentation networks on the Kvasir-SEG, ColonDB, CVC-300, and ETIS datasets. Furthermore, by using different amounts of training data in weakly supervised and fully supervised experiments, it is found that weakly supervised fine-tuning can save 70% to 73% of annotation time costs compared to fully supervised fine-tuning. This study provides a new perspective on the combination of weakly supervised learning and SAM models, significantly reducing annotation time and offering insights for further development in the field of colonoscopy polyp segmentation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3