AtomGID: An Atomic Gesture Identifier for Qualitative Spatial Reasoning

Author:

Bouchard Kevin1ORCID,Bouchard Bruno1

Affiliation:

1. Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada

Abstract

In this paper, we present a novel non-deep-learning-based approach for real-time object tracking and activity recognition within smart homes, aiming to minimize human intervention and dataset requirements. Our method utilizes discreet, easily concealable sensors and passive RFID technology to track objects in real-time, enabling precise activity recognition without the need for extensive datasets typically associated with deep learning techniques. Central to our approach is AtomGID, an algorithm tailored to extract highly generalizable spatial features from RFID data. Notably, AtomGID’s adaptability extends beyond RFID to other imprecise tracking technologies like Bluetooth beacons and radars. We validate AtomGID through simulation and real-world RFID data collection within a functioning smart home environment. To enhance recognition accuracy, we employ a clustering adaptation of the flocking algorithm, leveraging previously published Activities of Daily Living (ADLs) data. Our classifier achieves a robust classification rate ranging from 85% to 93%, underscoring the efficacy of our approach in accurately identifying activities. By prioritizing non-deep-learning techniques and harnessing the strengths of passive RFID technology, our method offers a pragmatic and scalable solution for activity recognition in smart homes, significantly reducing dataset dependencies and human intervention requirements.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3