Anaerobic Two-Phase Co-Digestion for Renewable Energy Production: Estimating the Effect of Substrate Pretreatment, Hydraulic Retention Time and Participating Microbial Consortia

Author:

Kabaivanova Lyudmila1ORCID,Hubenov Venelin1,Dimitrov Neven1,Petrova Penka1ORCID

Affiliation:

1. The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, 26, 1113 Sofia, Bulgaria

Abstract

Green and sustainable economies have recently become a key issue in long-term growth and well-being. Co-digestion of various waste materials in an eco-friendly way through biogas production has become the preferred method for their utilization and valorization. The possibility of hydrogen and methane yield maximization depends on the most suitable alkali reagent for pretreatment of waste lignocellulosic material, which was revealed in batch tests to determine the hydrogen production potential. The mixture for digestion consisted of pretreated wheat straw mixed with waste algal biomass in a ratio of 80:20 (w/w). The maximum hydrogen yield was achieved after applying sodium hydroxide thermoalkaline pretreatment, with a two-fold higher yield than the untreated control. Hydrogen production was stable and methane was not present in the resultant gas. The influence of the hydraulic retention time (HRT) on the maintenance of cascade installation was studied. The maximum daily concentration of hydrogen was achieved at an HRT of 2 days—42.5% H2—and the maximum concentration of methane was 56.1% at an HRT of 6 days. Accumulation of volatile fatty acids was registered in the first step and their depletion was noted in the second one. The obtained values of the cellulose content demonstrated that it was utilized by up to 2.75% in the methanogenic bioreactor at the end of the process. Metagenomics analyses revealed the bacteria Thermocaproicibacter melissae (44.9%) and Clostridium cellulosi (41.9%) participated in the consortium, accomplishing substrate hydrolysis and acidogenesis in the first stage. Less in abundance were Thermoanaerobacterium butyriciformans, Calorimonas adulescens, Pseudomonas aeruginosa and Anaerocolumna chitinilytica. Methanogenesis was performed by an archaeon closely related to Bathyarchaeota (99.5%) and Methanobacterium formicicum. The most abundant bacterial strains in the methanogenic fermenter were Abyssalbus ytuae (30%), Proteiniphilum acetatigenes (26%) and Ruficoccus amylovorans (13%).

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3