Recognition of Intergranular Corrosion in AISI 304 Stainless Steel by Integrating a Multilayer Perceptron Artificial Neural Network and Metallographic Image Processing

Author:

Ruelas-Santoyo Edgar Augusto1ORCID,Ríos-Lira Armando Javier1ORCID,Pantoja-Pacheco Yaquelin Verenice1ORCID,Jiménez-García José Alfredo1ORCID,Hernández-González Salvador1,Cruz-Domínguez Oscar2ORCID

Affiliation:

1. Instituto Tecnológico de Celaya/Tecnológico Nacional de México, Celaya 38010, Guanajuato, Mexico

2. Department of Industrial Engineering, Universidad Politécnica de Zacatecas, Plan de Pardillo Sn, Parque Industrial, Fresnillo 99059, Zacatecas, Mexico

Abstract

The correct management of operations in thermoelectric plants is based on the continuous evaluation of the structural integrity of its components, among which there are elements made of stainless steel that perform water conduction functions at elevated temperatures. The working conditions generate progressive wear that must be monitored from the perspective of the microstructure of the material. When AISI 304 stainless steel is subjected to a temperature range between 450 and 850 °C, it is susceptible to intergranular corrosion. This phenomenon, known as sensitization, causes the material to lose strength and generates different patterns in its microstructure. This research analyzes three different patterns present in the microstructure of stainless steel, which manifest themselves through the following characteristics: the absence of intergranular corrosion, the presence of intergranular corrosion, and the precipitation of chromium carbides. This article shows the development of a methodology capable of recognizing the corrosion patterns generated in stainless steel with an accuracy of 98%, through the integration of a multilayer perceptron neural network and the following digital image processing methods: phase congruence and a gray-level co-occurrence matrix. In this way, an automatic procedure for the analysis of the intergranular corrosion present in AISI 304 stainless steel using artificial intelligence is proposed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3