Design of a Dynamic Hybrid Compensator for Current Sharing Control of Parallel Phase-Shifted Full-Bridge Converter

Author:

Gong Baihui1,Liu Kan1ORCID,Luan Haozhe1,Wu Jiaming1,Zhou Jing1ORCID,Tan Shilin1,Huang Chao1,Wu Huajiang2

Affiliation:

1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410000, China

2. Ningbo Anson CNC Technique Co., Ltd., Ningbo 315000, China

Abstract

The phase-shifted full-bridge (PSFB) converter has been widely used in power supply modules due to its simple control and high output power. However, with the market’s increasing demand for higher power sources, the PSFB converter needs to face challenges in increasing its output power level. Compared to redesigning a larger power module or a larger single converter, it will be more cost-effective to achieve a higher power output by paralleling the existing converters. However, due to the manufacturing differences in circuit components, the output imbalance in parallel PSFB converter systems may damage the power modules. Thus, the influence of differences in circuit components is analyzed in this paper, and it is found that the leakage inductance and transformer ratio are the main factors resulting in errors in current sharing control. Consequently, a dynamic hybrid compensator (DHC) is proposed in this paper, that can significantly reduce the error in current sharing control via the compensation of the duty cycle of a slave module. Furthermore, the DHC is verified on an 800 W two-phase PSFB converter, which shows that even when the difference in components is as large as 20%, the proposed method can still reduce the error in current sharing control to less than 2% under both half and full load conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3