Calibration of Phased-Array High-Frequency Radar on an Anchored Floating Platform

Author:

Wan BinORCID,Wu Xiongbin,Yue XianchangORCID,Zhang Lan,Wang LiORCID

Abstract

Prior studies have highlighted the importance of calibrating receiver antennas in target direction-of-arrival (DOA) estimation and surface current measurement for high-frequency (HF) radar systems. It is worth noting that the calibration contributes to the performance of both shore-based HF radar and platform-mounted HF radar. Compared with shore-based HF radar, the influence of six-degrees-of-freedom (six-DOF) platform motion should be considered in the calibration of platform-mounted HF radar. This paper initially describes a calibration scheme that receives phasedarray antennas for an anchored platform-mounted HF radar incorporating a model of free rotation, which is called yaw rotation and dominates the six-DOF platform motion in this study. In the presence of yaw rotation, the amplitude and phase of the source calibration signal from the other shore-based radar sites reveal the directional sensitivity of the receiver phased-array antennas. The calibration of receiver phased-array antennas is composed of channel calibration (linking cables and receiver hardware calibration) and antenna pattern calibration. The antenna pattern at each bearing can be represented by the Fourier series. The estimation of channel calibration and antenna pattern calibration depends on an overdetermined HF radar system consisting of observed values and theoretical constraints, so the least-squares fits of the channel calibration coefficients and antenna pattern calibration coefficients are obtained. The experimental results show that the target DOA estimation and surface current measurement can be improved if the phased-array platform-mounted HF radar system is calibrated.

Funder

Xiongbin Wu

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3