Spatial and Seasonal Variations of the Island Mass Effect at the Sub-Antarctic Prince Edward Islands Archipelago

Author:

Lamont TarronORCID,Toolsee Tesha

Abstract

At the sub-Antarctic Prince Edward Islands (PEIs) in the Southern Ocean, the Island Mass Effect (IME) plays an important role in maintaining an ecosystem able to support diverse biological communities; however, limited in situ sampling has severely constrained our understanding of it. As such, our study used satellite chlorophyll a (chla) to provide the first detailed characterisation of the spatial extent and seasonal variability of the IME at the PEIs. Seasonal surface chla variations were remarkable, with localised increases observed from mid-austral spring to the end of autumn (October to May). In contrast, during June to September, there were no distinguishable differences between chla at the PEIs and that further afield. Seasonal chla changes were significantly correlated with higher light levels, warmer waters, and shallow upper mixed layer depths reflecting enhanced water column stability during summer and autumn, with the opposite pattern in winter and spring. The IME extended northeast of the islands and remained spatially distinct from elevated chla around the northern branch of the sub-Antarctic Front and the southern branch of the Antarctic Polar Front. From December to February, the IME was spatially connected to the island shelf. In contrast, during March–May and in October, higher chla was observed only to the northeast, some distance away from the islands, suggesting a delayed IME, which has not previously been observed at the PEIs. The clear association of this higher chla with the weak mean geostrophic circulation northeast of the islands suggested retention and accumulation of nutrients and phytoplankton biomass, which was likely aided by wind-driven northeastward transport of water from the shelf. Climatological mean chla to the northeast was generally higher than that on the PEI shelf, and further research is required to determine the importance of this region to ecosystem functioning at the islands.

Funder

National Research Foundation

Department of Forestry Fisheries and the Environment

Bayworld Centre for Research and Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3