Efficient Pipelined Broadcast with Monitoring Processing Node Status on a Multi-Core Processor

Author:

Park Jongsu

Abstract

This paper presents an efficient pipelined broadcasting algorithm with the inter-node transmission order change technique considering the communication status of processing nodes. The proposed method changes the transmission order for the broadcast operation based on the communication status of processing nodes. When a broadcast operation is received, a local bus checks the remaining pre-existing transmission data size of each processing node; it then transmits data according to the changed transmission order using the status information. Therefore, the synchronization time can be hidden for the remaining time, until the pre-existing data transmissions finish; as a result, the overall broadcast completion time is reduced. The simulation results indicated that the speed-up ratio of the proposed algorithm was up to 1.423, compared to that of the previous algorithm. To demonstrate physical implementation feasibility, the message passing engine (MPE) with the proposed broadcast algorithm was designed by using Verilog-HDL, which supports four processing nodes. The logic synthesis results with TSMC 0.18 μm process cell libraries show that the logic area of the proposed MPE is 2288.1 equivalent NAND gates, which is approximately 2.1% of the entire chip area. Therefore, performance improvement in multi-core processors is expected with a small hardware area overhead.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference49 articles.

1. An Efficient Hybrid-Switched Network-on-Chip for Chip Multiprocessors

2. Methods in Computational Chemistry;Wilson,2013

3. A survey of approaches used in parallel architectures and multi-core processors for performance improvement;Shukla;Prog. Syst. Eng.,2015

4. GPU Development and Computing Experienceshttp://docplayer.net/77930870-Gpu-development-and-computing-experiences.html

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3