Effects of Wall Thickness Variation on Hydrogen Embrittlement Susceptibility of Additively Manufactured 316L Stainless Steel with Lattice Auxetic Structures

Author:

Khedr Mahmoud12ORCID,Hamada Atef2ORCID,Abd-Elaziem Walaa3ORCID,Jaskari Matias2ORCID,Elsamanty Mahmoud14ORCID,Kömi Jukka5,Järvenpää Antti2ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt

2. Kerttu Saalasti Institute, Future Manufacturing Technologies (FMT), University of Oulu, 85500 Nivala, Finland

3. Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

4. Mechatronics and Robotics Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt

5. Materials and Mechanical Engineering, Centre for Advanced Steel Research, University of Oulu, 90014 Oulu, Finland

Abstract

In the present study, the hydrogen embrittlement (HE) susceptibility of an additively manufactured (AM) 316L stainless steel (SS) was investigated. The materials were fabricated in the form of a lattice auxetic structure with three different strut thicknesses, 0.6, 1, and 1.4 mm, by the laser powder bed fusion technique at a volumetric energy of 70 J·mm−3. The effect of H charging on the strength and ductility of the lattice structures was evaluated by conducting tensile testing of the H-charged specimens at a slow strain rate of 4 × 10−5 s−1. Hydrogen was introduced to the specimens via electrochemical charging in an NaOH aqueous solution for 24 h at 80 °C before the tensile testing. The microstructure evolution of the H-charged materials was studied using the electron backscattered diffraction (EBSD) technique. The study revealed that the auxetic structures of the AM 316L-SS exhibited a slight reduction in mechanical properties after H charging. The tensile strength was slightly decreased regardless of the thickness. However, the ductility was significantly reduced with increasing thickness. For instance, the strength and uniform elongation of the auxetic structure of the 0.6 mm thick strut were 340 MPa and 17.4% before H charging, and 320 MPa and 16.7% after H charging, respectively. The corresponding values of the counterpart’s 1.4 mm thick strut were 550 MPa and 29% before H charging, and 523 MPa and 23.9% after H charging, respectively. The fractography of the fracture surfaces showed the impact of H charging, as cleavage fracture was a striking feature in H-charged materials. Furthermore, the mechanical twins were enhanced during tensile straining of the H-charged high-thickness material.

Funder

Business Finland

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3