Rice Physiological Response with Bacillus subtilis and Saccharomyces cerevisiae Inoculation into Soil under Reclaimed Water–Fresh Water Combined Irrigation

Author:

Lu HongfeiORCID,Qi Xuebin,Rahman Shafeeq urORCID,Qiao Dongmei,Li Ping,Han Yang,Zhao Zhijuan

Abstract

The increasing soil salinity levels under reclaimed water irrigation have a negative effect on plant growth. Greenhouse experiments were conducted in 2018 and 2019 under reclaimed water–fresh water combined irrigation. After transplanting (Day 1), rice was irrigated with clean water (tap water) for 10 days to facilitate rice root colonisation. Subsequently, rice was irrigated with reclaimed water for 50 days (Day 11 to 60), and then irrigated with clean water. B. subtilis and S. cerevisiae were mixed with clean water (tap water) and irrigated into soil at Day 61. B. subtilis (20 billion colony-forming units/g) and S. cerevisiae (20 billion colony-forming units/g) were mixed at the following proportions: 5 g and 0 (J1), 3.75 g and 1.25 g (J2), 2.5 g and 2.5 g (J3), 1.25 g and 3.75 g (J4), and 0 and 5 g (J5), respectively; rice treated with reclaimed water (CK) and clean water (J0) with no microorganisms applied were also used. We measured NO3--N and NH4+-N concentrations and electrical conductivity (EC) in the soil at 0–5, 5–15, and 15–25 cm layers; root activity; and malondialdehyde (MDA), soluble sugar, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutamine synthetase (GS) activity in leaves at Day 71. B. subtilis and S. cerevisiae combination could promote rice physiological indices, and B. subtilis had a greater effect than S. cerevisiae. There are obvious differences in the physiological performance and soil N between 2018 and 2019 due to the EC of reclaimed water. Redundancy analysis revealed that soil NO3−-N and the mass of B. subtilis applied were major factors influencing leaf physiological indices. Five grams of B. subtilis is recommended to facilitate rice growth after irrigation with reclaimed water. Our research provides a new agronomic measure for the safe utilisation of reclaimed water.

Funder

Program of the National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3