Authoring Moving Parts of Objects in AR, VR and the Desktop

Author:

Vargas González Andrés N.1ORCID,Williamson Brian1,LaViola Joseph J.1

Affiliation:

1. Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA

Abstract

Creating digital twins of real objects is becoming more popular, with smartphones providing 3D scanning capabilities. Adding semantics to the reconstructed virtual objects is important to possibly reproduce training scenarios that otherwise could demand significant resources or happen in dangerous scenarios in some cases. The aim of this work is to evaluate the usability of authoring object component behaviors in immersive and non-immersive approaches. Therefore, we present an evaluation of the perceived ease of use to author moving parts of objects under three different conditions: desktop, augmented reality (AR) and virtual reality (VR). This paper provides insights into the perceived benefits and issues that domain experts might encounter when authoring geometrical component behaviors across each interface. A within-subject study is the major contribution of this work, from which is presented an analysis based on the usability, workload and user interface preferences of participants in the study. To reduce confounding variables in the study, we ensured that the virtual objects and the environment used for the evaluation were digital twins of the real objects and the environment that the experiment took place in. Results show that the desktop interface was perceived as more efficient and easier to use based on usability and workload measures. The desktop was preferred for performing component selection but no difference was found in the preference for defining a behavior and visualizing it. Based on these results, a set of recommendations and future directions are provided to achieve a more usable, immersive authoring experience.

Funder

NSF Award

Northrop Grumman.

Unknot.id

Florida High Tech Corridor Council Industry Matching Research Program

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3