Cross-Layer Optimization for Heterogeneous MU-MIMO/OFDMA Networks

Author:

Lee Kyu-haengORCID,Kim DaeheeORCID

Abstract

To enable the full benefits from MU-MIMO (Multiuser-Multiple Input Multiple Output) and OFDMA (Orthogonal Frequency Division Multiple Access) to be achieved, the optimal use of these two technologies for a given set of network resources has been investigated in a rich body of literature. However, most of these studies have focused either on maximizing the performance of only one of these schemes, or have considered both but only for single-hop networks, in which the effect of the interference between nodes is relatively limited, thus causing the network performance to be overestimated. In addition, the heterogeneity of the nodes has not been sufficiently considered, and in particular, the joint use of OFDMA and MU-MIMO has been assumed to be always available at all nodes. In this paper, we propose a cross-layer optimization framework that considers both OFDMA and MU-MIMO for heterogeneous wireless networks. Not only does our model assume that the nodes have different capabilities, in terms of bandwidth and the number of antennas, but it also supports practical use cases in which nodes can support either OFDMA or MU-MIMO, or both at the same time. Our optimization model carefully takes into account the interactions between the key elements of the physical layer to the network layer. In addition, we consider multi-hop networks, and capture the complicated interference relationships between nodes as well as multi-path routing via multi-user transmissions. We formulate the proposed model as a Mixed Integer Linear Programming (MILP) problem, and initially model the case in which each node can selectively use either OFDMA or MU-MIMO; we then extend this to scenarios in which they are jointly used. As a case study, we apply the proposed model to sum-rate maximization and max–min fair allocation, and verify through MATLAB numerical evaluations that it can take appropriate advantage of each technology for a given set of network resources. Based on the optimization results, we also observe that when the two technologies are jointly used, more multi-user transmissions are enabled thanks to flexible resource allocation, meaning that greater use of the link capacity is achieved.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. 11ax—IEEE Draft Standard for Information Technology. Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment Enhancements for High Efficiency WLAN,2017

2. Evolved Universal Terrestrial Radio Access (E-UTRA), Downlink Multiple Input Multiple Output (MIMO) Enhancement for LTE-Advanced (Release 11); 3GPP TR V11.0.0 https://www.3gpp.org/specifications/releases

3. A Tractable and Accurate Cross-Layer Model for Multi-Hop MIMO Networks

4. An optimal link layer model for multi-hop MIMO networks

5. Joint bandwidth allocation, element assignment and scheduling for wireless mesh networks with MIMO links

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3