Hypothermic preservation of rat hearts using antifreeze glycoprotein

Author:

Takago Shintaro1,Matsumoto Isao,Kato Hiroki,Saito Naoki,Ueda Hideyasu,Iino Kenji,Kimura Keiichi,Takemura Hirofumi

Affiliation:

1. Department of Cardiovascular Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan. shintaro-takago@med.kanazawa-u.ac.jp

Abstract

Antifreeze proteins are an effective additive for low-temperature preservation of solid organs. Here, we compared static hypothermic preservation with and without antifreeze glycoprotein (AFGP), followed by nonfreezing cryopreservation of rat hearts. The heart was surgically extracted and immersed in one of the cardioplegia solutions after cardiac arrest. Control rat hearts (n=6) were immersed in University of Wisconsin (UW) solution whereas AFGP-treated hearts (AFGP group) (n=6) were immersed in UW solution containing 500 μg/ml AFGP. After static hypothermic preservation, a Langendorff apparatus was used to reperfuse the coronary arteries with oxygenated Krebs-Henseleit solution. After 30, 60, 90, and 120 min, the heart rate (HR), coronary flow (CF), cardiac contractile force (max dP/dt), and cardiac diastolic force (min dP/dt) were measured. Tissue water content (TWC) and tissue adenosine triphosphate (ATP) levels in the reperfused preserved hearts were also assessed. All the parameters were compared between the control and AFGP groups. Compared with the control group, the AFGP group had significantly (p<0.05) higher values of the following parameters: HR at 60, 90, and 120 min; CF at all four time points; max dP/dt at 90 min; min dP/dt at 90 and 120 min; and tissue ATP levels at 120 min. TWC did not differ significantly between the groups. The higher HR, CF, max dP/dt, min dP/dt, and tissue ATP levels in the AFGP compared with those in control hearts suggested that AFGP conferred superior hemodynamic and metabolic functions. Thus, AFGP might be a useful additive for the static/nonfreezing hypothermic preservation of hearts.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3