Differential Mitochondrial Adaptation of the Slow and Fast Skeletal Muscles by Endurance Running Exercise in Streptozotocin-Induced Diabetic Mice

Author:

Takemura A1,Matsunaga Y1,Shinya T1,Hatta H1

Affiliation:

1. Department of Sports Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan

Abstract

The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.

Publisher

Institute of Physiology of the Czech Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3