Affiliation:
1. Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
2. Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
Abstract
(Pro)renin receptor (PRR) contributes to regulating many physiological and pathological processes; however, the role of PRR-mediated signaling pathways in myocardial ischemia/reperfusion injury (IRI) remains unclear. In this study, we used an in vitro model of hypoxia/reoxygenation (H/R) to mimic IRI and carried out PRR knockdown by siRNA and PRR overexpression using cDNA in H9c2 cells. Cell proliferation activity was examined by MTT and Cell Counting Kit-8 (CCK-8) assays. Apoptosis-related factors, autophagy markers and β-catenin pathway activity were assessed by real-time PCR and western blotting. After 24 h of hypoxia followed by 2 h of reoxygenation, the expression levels of PRR, LC3B-I/II, Beclin1, cleaved caspase-3, cleaved caspase-9 and Bax were upregulated, suggesting that apoptosis and autophagy were increased in H9c2 cells. Contrary to the effects of PRR downregulation, the overexpression of PRR inhibited proliferation, induced apoptosis, increased the expression of pro-apoptotic factors and autophagy markers, and promoted activation of the β-catenin pathway. Furthermore, all these effects were reversed by treatment with the β-catenin antagonist DKK-1. Thus, we concluded that PRR activation can trigger H/R-induced apoptosis and autophagy in H9c2 cells through the β-catenin signaling pathway, which may provide new therapeutic targets for the prevention and treatment of myocardial IRI.
Publisher
Institute of Physiology of the Czech Academy of Sciences
Subject
General Medicine,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献