Techno economical assessment of a low-carbon hydrogen production process using residual biomass gasification and carbon capture

Author:

Carrillo E.J.1,Lizcano-Prada J.2,Kafaro V.1,Rodriguez-Vallejo D.3,Uribe-Rodr�guez A.4

Affiliation:

1. Research Center for Sustainable Development in Industry and Energy (CIDES), Universidad Industrial de Santander, 680002 Bucaramanga, Colombia

2. TIP, Colombia, Km 7 + 400m Anillo vial Palenque, Diagonal Floridablanca No 22-31 - Bodega 11, Floridablanca, Colombia

3. Pfizer, Chemical Research Development, Sandwich, CT13 9NJ, United Kingdom

4. Centre for Innovation and Technology Colombian Petroleum Institute, ECOPETROL, 681011 Piedecuesta, Colombia

Abstract

Aiming to mitigate the environmental impact derived from fossil fuels, we propose an integrated carbon capture-biomass gasification process is proposed to produce low-carbon hydrogen as an alternative energy carrier. The process begins with the pre-treatment of empty fruit bunches (EFB), involving grinding, drying, torrefaction, and pelletization. The resulting EFB pellet is then fed into a dual gasifier, followed by a catalytic cracking of tar and water gas shift reaction to produce syngas, aiming to increase its H2 to CO ratio. Subsequently, we explore two alternatives (DEPG and MEA) for syngas upgrading by removing CO2. Finally, a PSA system is modeled to obtain H2 at 99.9% purity. The pre-treatment stage densifies the biomass from an initial composition (%C 46.47, %H 6.22, %O 42.25) to (%C 54.10, %H 6.09, %O 28.67). The dual gasifier operates at 800�C, using steam as a gasifying agent. The resulting syngas has a volume concentration (%CO 20.0, %CO2 28.2, %H2 42.2, %CH4 5.9). Next stages of the process focus on removing the CO2 and increased H2 through catalytic reactions from the syngas. Thus, the DEPG carbon capture process can decrease the CO2 concentration to 2.9%, increasing the hydrogen to 95.6% in volume. In contrast, the MEA process reduces the concentration of CO2 to 5.2% and increases the concentration of H2 to 93.1%. Moreover, we estimate a levelized costs of hydrogen (LCOH) and carbon capture cost for each method (DEPG and MEA) (LCOC) and CO2 avoided (LCCA). LCOH: 3.05 USD/kg H2, LCOC: 92 and 59 USD/t CO2 and 183 and 119 USD/t CO2, for DEPG and MEA respectively.

Publisher

PSE Press

Reference29 articles.

1. B. Page and G. Turan, "GLOBAL STATUS OF CCS 2020." Accessed: Dec. 14, 2023. [Online]. Available: https://www.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-report-2020/#:~:text=The%20Global%20Status%20of%20CCS,over%20the%20past%2012%20months.

2. M. Noussan, P. P. Raimondi, R. Scita, and M. Hafner, "The role of green and blue hydrogen in the energy transition-a technological and geopolitical perspective," Sustainability (Switzerland), vol. 13, no. 1. MDPI AG, pp. 1-26, Jan. 01, 2021. doi: 10.3390/su13010298.

3. D. Fickling, "Bloomberg. Bloomberg: A Three-Part Series on Hydrogen Energy." Accessed: Nov. 09, 2023. [Online]. Available: https://www.bloomberg.com/graphics/2020-opinion-hydrogen-green-energy-revolution-challenges-risks-advantages/oil.html

4. Ministerio de ciencias, "Hoja_Ruta_Hidrogeno_Colombia_2810," 2021.

5. W. J. Martinez-Burgos et al., "Hydrogen: Current advances and patented technologies of its renewable production," Journal of Cleaner Production, vol. 286. Elsevier Ltd, Mar. 01, 2021. doi: 10.1016/j.jclepro.2020.124970.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3