Optimal Design and Control of Behind-the-Meter Resources for Retail Buildings with EV Fast Charging

Author:

Campos Gustavo1,Vercellino Roberto1,Guittet Darice1,Mann Margaret1

Affiliation:

1. National Renewable Energy Laboratory (NREL), Golden, CO, USA

Abstract

The growing electrification of buildings and vehicles, while a natural step towards achieving global decarbonization, poses some challenges for the electric grid in terms of power consumption. One way of addressing them is by deploying onsite, behind-the-meter resources (BTMR), such as battery energy storage and solar PV generation. The optimal design of these systems, however, is a demanding task that depends on the integration of multiple complex subsystems. In this work, the optimal integrated design and dispatch of BTMR systems for retail buildings with electric vehicle fast charging stations is addressed. A framework is proposed, combining high-fidelity simulation (of buildings, electric vehicle fast charging stations, and BTMR), predictive control strategies with closed-loop implementation, and a derivative-free design method that explores parallelization and high-performance computing. Focus is given to the design layer, highlighting the effect of parallelization on the choice of the method, computational effort, and types of results. A case study of a big-box grocery store with an EV fast charging station is presented, and its optimal BTMR system is identified in terms of equipment sizes, costs (capital, utility, lifecycle, and levelized) and resiliency against outages, demonstrating great potential for real-world applications.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3