Cost-optimal Selection of pH Control for Mineral Scaling Prevention in High Recovery Reverse Osmosis Desalination

Author:

Amusat Oluwamayowa O.1,Dudchenko Alexander V.2,Atia Adam A.34,Bartholomew Timothy3

Affiliation:

1. Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Rd, Berkeley, CA 94720, USA

2. SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA

3. National Energy Technology Laboratory (NETL), Pittsburgh, PA 15236, USA

4. NETL Support Contractor, Pittsburgh, PA, 15236, USA

Abstract

Explicitly incorporating the effects of chemical phenomena such as chemical pretreatment and mineral scaling during the design of treatment systems is critical; however, the complexity of these phenomena and limitations on data have historically hindered the incorporation of detailed water chemistry into the modeling and optimization of water desalination systems. Thus, while qualitative assessments and experimental studies on chemical pretreatment and scaling are abundant in the literature, very little has been done to assess the technoeconomic implications of different chemical pretreatment alternatives within the context of end-to-end water treatment train optimization. In this work, we begin to address this challenge by exploring the impact of pH control during pretreatment on the cost and operation of a high-recovery desalination train. We compare three pH control methods used in water treatment (H2SO4, HCl, and CO2) and assess their impact on the operation of a desalination plant for brackish water and seawater. Our results show that the impact of the acid choice on the cost can vary widely depending on the water source, with CO2 found to be up to 11% and 49% more expensive than HCl in the seawater and brackish cases, respectively. We also find that the acid chemistry can significantly influence upstream processes, with use of H2SO4 requiring more calcium removal in the softening step to prevent gypsum scaling in HPRO system. Our work highlights why incorporating water chemistry information is critical when evaluating the key cost and operational drivers for high-recovery desalination treatment trains.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3