Biogas Valorization from a Process Synthesis Perspective: Heat and Work Integration to Maximize CO2 Conversion

Author:

Sempuga Baraka C.1,Ncube Selusiwe1

Affiliation:

1. University of South Africa, Institute for Catalysis and Energy Solutions, Johannesburg, Gauteng, South Africa

Abstract

Biogas is often considered as a source of renewable energy, for heat and power production. However, biogas has greater promise as a source of concentrated CO2 in addition to methane, making it a rich supply of carbon and hydrogen for the generation of fuel and chemicals. In this work, we use the concept of attainable region in the enthalpy-Gibbs free energy space to identify opportunities for effective biogas valorization that maximizes the conversion of CO2. The AR concept allows us to study a chemical process without knowing the exact reaction mechanism that the species in the process use. Deriving Material Balance equations that relate a reactive process's output species to its input species is sufficient to identify process limits and explore opportunities to optimize its performance in terms of material, energy, and work. The conversion of biogas to valuable products is currently done in two steps; the high temperature and endothermic reformer step, followed by the low temperature exothermic synthesis step. We demonstrate, using Aspen Simulation, that energy integration, both heat and work, between the two steps is crucial to achieving a substantial amount of CO2 conversion. We also show how a heat pump configuration can be utilized to integrate energy between the reformer and synthesis steps against the temperature gradient by integrating external renewable energy.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3