Abstract
In scope of biodiversity and sustainable ecosystem development the restoration of the bog ecosystem is important, because by reducing the drainage effect on the bog, the negative impact on adjacent intact or relatively intact raised bogs and other wetland hydrological regimes is lowered. To restore a degraded bog hydrological regime, it is necessary to fill up the drainage ditches and cut out part of the forest stand. While researching scientific literature the author has obtained no evidence that there is a system dynamics model developed in order to simulate the tree cutting intensity in a degraded bog after filling up the drainage ditches with the aim to speed up the restoration of hydrological regimes, thus this approach is an innovative way of restoring the hydrological regime of degraded bogs. In previous studies the author concluded that the STELLA® system dynamics model is an appropriate tool to model the hydrological regime of bog. As a result of this research there is a STELLA® system dynamics model developed which through mathematical relationships helps to better understand the bog water cycle and to determine the consequences of any intervention on the bog ecosystem, primarily the effect of tree cutting. While running this STELLA® system dynamics model by changing the leaf area index, changes in the peat layer moisture level can be observed, which allows to predict the tree cutting intensity in order to reach the desired peat layer moisture level. By changing input data, this STELLA® system dynamics model could be used in other restoration projects of degraded raised bogs.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献